vision_agent.tools
vision_agent.tools
register_tool
Source code in vision_agent/tools/__init__.py
vision_agent.tools.tools
COLORS
module-attribute
COLORS = [
(158, 218, 229),
(219, 219, 141),
(23, 190, 207),
(188, 189, 34),
(199, 199, 199),
(247, 182, 210),
(127, 127, 127),
(227, 119, 194),
(196, 156, 148),
(197, 176, 213),
(140, 86, 75),
(148, 103, 189),
(255, 152, 150),
(152, 223, 138),
(214, 39, 40),
(44, 160, 44),
(255, 187, 120),
(174, 199, 232),
(255, 127, 14),
(31, 119, 180),
]
FUNCTION_TOOLS
module-attribute
FUNCTION_TOOLS = [
owlv2_object_detection,
owlv2_sam2_instance_segmentation,
owlv2_sam2_video_tracking,
countgd_object_detection,
countgd_sam2_instance_segmentation,
countgd_sam2_video_tracking,
florence2_ocr,
florence2_sam2_instance_segmentation,
florence2_sam2_video_tracking,
florence2_object_detection,
claude35_text_extraction,
document_extraction,
document_qa,
ocr,
qwen2_vl_images_vqa,
qwen2_vl_video_vqa,
depth_anything_v2,
generate_pose_image,
vit_nsfw_classification,
video_temporal_localization,
flux_image_inpainting,
siglip_classification,
minimum_distance,
]
UTIL_TOOLS
module-attribute
UTIL_TOOLS = [
extract_frames_and_timestamps,
save_json,
load_image,
save_image,
save_video,
overlay_bounding_boxes,
overlay_segmentation_masks,
overlay_heat_map,
]
sam2
'sam2' is a tool that can segment multiple objects given an input bounding box, label and score. It returns a set of masks along with the corresponding bounding boxes and labels.
PARAMETER | DESCRIPTION |
---|---|
image |
The image that contains multiple instances of the object.
TYPE:
|
detections |
A list of dictionaries containing the score, label, and bounding box of the detected objects with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, bounding box, and mask of the detected objects with normalized coordinates (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. |
Example
>>> sam2(image, [
{'score': 0.49, 'label': 'flower', 'bbox': [0.1, 0.11, 0.35, 0.4]},
])
[
{
'score': 0.49,
'label': 'flower',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
]
Source code in vision_agent/tools/tools.py
od_sam2_video_tracking
Source code in vision_agent/tools/tools.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
|
owlv2_object_detection
'owlv2_object_detection' is a tool that can detect and count multiple objects given a text prompt such as category names or referring expressions on images. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names and associated probability scores.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image.
TYPE:
|
image |
The image to ground the prompt to.
TYPE:
|
box_threshold |
The threshold for the box detection. Defaults to 0.10.
TYPE:
|
fine_tune_id |
If you have a fine-tuned model, you can pass the fine-tuned model ID here to use it.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and bounding box of the detected objects with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. |
Example
>>> owlv2_object_detection("car, dinosaur", image)
[
{'score': 0.99, 'label': 'dinosaur', 'bbox': [0.1, 0.11, 0.35, 0.4]},
{'score': 0.98, 'label': 'car', 'bbox': [0.2, 0.21, 0.45, 0.5},
]
Source code in vision_agent/tools/tools.py
owlv2_sam2_instance_segmentation
'owlv2_sam2_instance_segmentation' is a tool that can detect and count multiple instances of objects given a text prompt such as category names or referring expressions on images. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names, masks and associated probability scores.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The object that needs to be counted.
TYPE:
|
image |
The image that contains multiple instances of the object.
TYPE:
|
box_threshold |
The threshold for detection. Defaults to 0.10.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, bounding box, and mask of the detected objects with normalized coordinates (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. |
Example
>>> owlv2_sam2_instance_segmentation("flower", image)
[
{
'score': 0.49,
'label': 'flower',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
]
Source code in vision_agent/tools/tools.py
owlv2_sam2_video_tracking
'owlv2_sam2_video_tracking' is a tool that can track and segment multiple objects in a video given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, masks and associated probability scores and is useful for tracking and counting without duplicating counts.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image.
TYPE:
|
frames |
The list of frames to ground the prompt to.
TYPE:
|
chunk_length |
The number of frames to re-run owlv2 to find new objects.
TYPE:
|
fine_tune_id |
If you have a fine-tuned model, you can pass the fine-tuned model ID here to use it.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[List[Dict[str, Any]]]
|
List[List[Dict[str, Any]]]: A list of list of dictionaries containing the label, segmentation mask and bounding boxes. The outer list represents each frame and the inner list is the entities per frame. The detected objects have normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. The label names are prefixed with their ID represent the total count. |
Example
>>> owlv2_sam2_video_tracking("car, dinosaur", frames)
[
[
{
'label': '0: dinosaur',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
],
...
]
Source code in vision_agent/tools/tools.py
florence2_object_detection
'florence2_object_detection' is a tool that can detect multiple objects given a text prompt which can be object names or caption. You can optionally separate the object names in the text with commas. It returns a list of bounding boxes with normalized coordinates, label names and associated confidence scores of 1.0.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image. Use exclusive categories that do not overlap such as 'person, car' and NOT 'person, athlete'.
TYPE:
|
image |
The image to used to detect objects
TYPE:
|
fine_tune_id |
If you have a fine-tuned model, you can pass the fine-tuned model ID here to use it.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and bounding box of the detected objects with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The scores are always 1.0 and cannot be thresholded |
Example
>>> florence2_object_detection('person looking at a coyote', image)
[
{'score': 1.0, 'label': 'person', 'bbox': [0.1, 0.11, 0.35, 0.4]},
{'score': 1.0, 'label': 'coyote', 'bbox': [0.34, 0.21, 0.85, 0.5},
]
Source code in vision_agent/tools/tools.py
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
|
florence2_sam2_instance_segmentation
'florence2_sam2_instance_segmentation' is a tool that can segment multiple objects given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, mask file names and associated probability scores of 1.0.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image. Use exclusive categories that do not overlap such as 'person, car' and NOT 'person, athlete'.
TYPE:
|
image |
The image to ground the prompt to.
TYPE:
|
fine_tune_id |
If you have a fine-tuned model, you can pass the fine-tuned model ID here to use it.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, bounding box, and mask of the detected objects with normalized coordinates (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. |
Example
>>> florence2_sam2_instance_segmentation("car, dinosaur", image)
[
{
'score': 1.0,
'label': 'dinosaur',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
]
Source code in vision_agent/tools/tools.py
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
|
florence2_sam2_video_tracking
'florence2_sam2_video_tracking' is a tool that can track and segment multiple objects in a video given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, masks and associated probability scores and is useful for tracking and counting without duplicating counts.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image. Use exclusive categories that do not overlap such as 'person, car' and NOT 'person, athlete'.
TYPE:
|
frames |
The list of frames to ground the prompt to.
TYPE:
|
chunk_length |
The number of frames to re-run florence2 to find new objects.
TYPE:
|
fine_tune_id |
If you have a fine-tuned model, you can pass the fine-tuned model ID here to use it.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[List[Dict[str, Any]]]
|
List[List[Dict[str, Any]]]: A list of list of dictionaries containing the label, segmentation mask and bounding boxes. The outer list represents each frame and the inner list is the entities per frame. The detected objects have normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. The label names are prefixed with their ID represent the total count. |
Example
>>> florence2_sam2_video_tracking("car, dinosaur", frames)
[
[
{
'label': '0: dinosaur',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
],
...
]
Source code in vision_agent/tools/tools.py
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
|
florence2_ocr
'florence2_ocr' is a tool that can detect text and text regions in an image. Each text region contains one line of text. It returns a list of detected text, the text region as a bounding box with normalized coordinates, and confidence scores. The results are sorted from top-left to bottom right.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to extract text from.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the detected text, bbox with normalized coordinates, and confidence score. |
Example
>>> florence2_ocr(image)
[
{'label': 'hello world', 'bbox': [0.1, 0.11, 0.35, 0.4], 'score': 0.99},
]
Source code in vision_agent/tools/tools.py
countgd_object_detection
'countgd_object_detection' is a tool that can detect multiple instances of an object given a text prompt. It is particularly useful when trying to detect and count a large number of objects. You can optionally separate object names in the prompt with commas. It returns a list of bounding boxes with normalized coordinates, label names and associated confidence scores.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The object that needs to be counted.
TYPE:
|
image |
The image that contains multiple instances of the object.
TYPE:
|
box_threshold |
The threshold for detection. Defaults to 0.23.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and bounding box of the detected objects with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. |
Example
>>> countgd_object_detection("flower", image)
[
{'score': 0.49, 'label': 'flower', 'bbox': [0.1, 0.11, 0.35, 0.4]},
{'score': 0.68, 'label': 'flower', 'bbox': [0.2, 0.21, 0.45, 0.5},
{'score': 0.78, 'label': 'flower', 'bbox': [0.3, 0.35, 0.48, 0.52},
{'score': 0.98, 'label': 'flower', 'bbox': [0.44, 0.24, 0.49, 0.58},
]
Source code in vision_agent/tools/tools.py
countgd_sam2_instance_segmentation
'countgd_sam2_instance_segmentation' is a tool that can detect multiple instances of an object given a text prompt. It is particularly useful when trying to detect and count a large number of objects. You can optionally separate object names in the prompt with commas. It returns a list of bounding boxes with normalized coordinates, label names, masks associated confidence scores.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The object that needs to be counted.
TYPE:
|
image |
The image that contains multiple instances of the object.
TYPE:
|
box_threshold |
The threshold for detection. Defaults to 0.23.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, bounding box, and mask of the detected objects with normalized coordinates (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. |
Example
>>> countgd_sam2_instance_segmentation("flower", image)
[
{
'score': 0.49,
'label': 'flower',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
]
Source code in vision_agent/tools/tools.py
countgd_sam2_video_tracking
'countgd_sam2_video_tracking' is a tool that can track and segment multiple objects in a video given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, masks and associated probability scores and is useful for tracking and counting without duplicating counts.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image.
TYPE:
|
frames |
The list of frames to ground the prompt to.
TYPE:
|
chunk_length |
The number of frames to re-run countgd to find new objects.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[List[Dict[str, Any]]]
|
List[List[Dict[str, Any]]]: A list of list of dictionaries containing the label, segmentation mask and bounding boxes. The outer list represents each frame and the inner list is the entities per frame. The detected objects have normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. The label names are prefixed with their ID represent the total count. |
Example
>>> countgd_sam2_video_tracking("car, dinosaur", frames)
[
[
{
'label': '0: dinosaur',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
],
...
]
Source code in vision_agent/tools/tools.py
countgd_visual_prompt_object_detection
'countgd_visual_prompt_object_detection' is a tool that can precisely count multiple instances of an object given few visual example prompts. It returns a list of bounding boxes with normalized coordinates, label names and associated confidence scores.
PARAMETER | DESCRIPTION |
---|---|
visual_prompts |
Bounding boxes of the object in format [xmin, ymin, xmax, ymax]. Upto 3 bounding boxes can be provided. image (np.ndarray): The image that contains multiple instances of the object. box_threshold (float, optional): The threshold for detection. Defaults to 0.23.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and bounding box of the detected objects with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. |
Example
>>> countgd_visual_object_detection(
visual_prompts=[[0.1, 0.1, 0.4, 0.42], [0.2, 0.3, 0.25, 0.35]],
image=image
)
[
{'score': 0.49, 'label': 'object', 'bounding_box': [0.1, 0.11, 0.35, 0.4]},
{'score': 0.68, 'label': 'object', 'bounding_box': [0.2, 0.21, 0.45, 0.5},
{'score': 0.78, 'label': 'object', 'bounding_box': [0.3, 0.35, 0.48, 0.52},
{'score': 0.98, 'label': 'object', 'bounding_box': [0.44, 0.24, 0.49, 0.58},
]
Source code in vision_agent/tools/tools.py
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 |
|
custom_object_detection
'custom_object_detection' is a tool that can detect instances of an object given a deployment_id of a previously finetuned object detection model. It is particularly useful when trying to detect objects that are not well detected by generalist models. It returns a list of bounding boxes with normalized coordinates, label names and associated confidence scores.
PARAMETER | DESCRIPTION |
---|---|
deployment_id |
The id of the finetuned model.
TYPE:
|
image |
The image that contains instances of the object.
TYPE:
|
box_threshold |
The threshold for detection. Defaults to 0.1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and bounding box of the detected objects with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. |
Example
>>> custom_object_detection("abcd1234-5678efg", image)
[
{'score': 0.49, 'label': 'flower', 'bbox': [0.1, 0.11, 0.35, 0.4]},
{'score': 0.68, 'label': 'flower', 'bbox': [0.2, 0.21, 0.45, 0.5]},
{'score': 0.78, 'label': 'flower', 'bbox': [0.3, 0.35, 0.48, 0.52]},
{'score': 0.98, 'label': 'flower', 'bbox': [0.44, 0.24, 0.49, 0.58]},
]
Source code in vision_agent/tools/tools.py
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 |
|
custom_od_sam2_video_tracking
'custom_od_sam2_video_tracking' is a tool that can segment multiple objects given a custom model with predefined category names. It returns a list of bounding boxes, label names, mask file names and associated probability scores.
PARAMETER | DESCRIPTION |
---|---|
deployment_id |
The id of the deployed custom model.
TYPE:
|
image |
The image to ground the prompt to.
TYPE:
|
chunk_length |
The number of frames to re-run florence2 to find new objects.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[List[Dict[str, Any]]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, bounding box, and mask of the detected objects with normalized coordinates (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. |
Example
>>> custom_od_sam2_video_tracking("abcd1234-5678efg", frames)
[
[
{
'label': '0: dinosaur',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
],
...
]
Source code in vision_agent/tools/tools.py
qwen2_vl_images_vqa
'qwen2_vl_images_vqa' is a tool that can answer any questions about arbitrary images including regular images or images of documents or presentations. It can be very useful for document QA or OCR text extraction. It returns text as an answer to the question.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The question about the document image
TYPE:
|
images |
The reference images used for the question
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
A string which is the answer to the given prompt.
TYPE:
|
Example
>>> qwen2_vl_images_vqa('Give a summary of the document', images)
'The document talks about the history of the United States of America and its...'
Source code in vision_agent/tools/tools.py
qwen2_vl_video_vqa
'qwen2_vl_video_vqa' is a tool that can answer any questions about arbitrary videos including regular videos or videos of documents or presentations. It returns text as an answer to the question.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The question about the video
TYPE:
|
frames |
The reference frames used for the question
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
A string which is the answer to the given prompt.
TYPE:
|
Example
>>> qwen2_vl_video_vqa('Which football player made the goal?', frames)
'Lionel Messi'
Source code in vision_agent/tools/tools.py
ocr
'ocr' extracts text from an image. It returns a list of detected text, bounding boxes with normalized coordinates, and confidence scores. The results are sorted from top-left to bottom right.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to extract text from.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the detected text, bbox with normalized coordinates, and confidence score. |
Example
>>> ocr(image)
[
{'label': 'hello world', 'bbox': [0.1, 0.11, 0.35, 0.4], 'score': 0.99},
]
Source code in vision_agent/tools/tools.py
claude35_text_extraction
'claude35_text_extraction' is a tool that can extract text from an image. It returns the extracted text as a string and can be used as an alternative to OCR if you do not need to know the exact bounding box of the text.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to extract text from.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
The extracted text from the image.
TYPE:
|
Source code in vision_agent/tools/tools.py
document_extraction
'document_extraction' is a tool that can extract structured information out of documents with different layouts. It returns the extracted data in a structured hierarchical format containing text, tables, pictures, charts, and other information.
PARAMETER | DESCRIPTION |
---|---|
image |
The document image to analyze
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing the extracted information. |
Example
>>> document_analysis(image)
{'pages':
[{'bbox': [0, 0, 1.0, 1.0],
'chunks': [{'bbox': [0.8, 0.1, 1.0, 0.2],
'label': 'page_header',
'order': 75
'caption': 'Annual Report 2024',
'summary': 'This annual report summarizes ...' },
{'bbox': [0.2, 0.9, 0.9, 1.0],
'label': 'table',
'order': 1119,
'caption': [{'Column 1': 'Value 1', 'Column 2': 'Value 2'},
'summary': 'This table illustrates a trend of ...'},
],
Source code in vision_agent/tools/tools.py
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 |
|
document_qa
'document_qa' is a tool that can answer any questions about arbitrary documents, presentations, or tables. It's very useful for document QA tasks, you can ask it a specific question or ask it to return a JSON object answering multiple questions about the document.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The question to be answered about the document image.
TYPE:
|
image |
The document image to analyze.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
The answer to the question based on the document's context.
TYPE:
|
Example
>>> document_qa(image, question)
'The answer to the question ...'
Source code in vision_agent/tools/tools.py
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 |
|
video_temporal_localization
'video_temporal_localization' will run qwen2vl on each chunk_length_frames value selected for the video. It can detect multiple objects independently per chunk_length_frames given a text prompt such as a referring expression but does not track objects across frames. It returns a list of floats with a value of 1.0 if the objects are found in a given chunk_length_frames of the video.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The question about the video
TYPE:
|
frames |
The reference frames used for the question
TYPE:
|
model |
The model to use for the inference. Valid values are 'qwen2vl', 'gpt4o'.
TYPE:
|
chunk_length_frames |
length of each chunk in frames
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[float]
|
List[float]: A list of floats with a value of 1.0 if the objects to be found are present in the chunk_length_frames of the video. |
Example
>>> video_temporal_localization('Did a goal happened?', frames)
[0.0, 0.0, 0.0, 1.0, 1.0, 0.0]
Source code in vision_agent/tools/tools.py
vit_image_classification
'vit_image_classification' is a tool that can classify an image. It returns a list of classes and their probability scores based on image content.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to classify or tag
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing the labels and scores. One dictionary contains a list of labels and other a list of scores. |
Example
>>> vit_image_classification(image)
{"labels": ["leopard", "lemur, otter", "bird"], "scores": [0.68, 0.30, 0.02]},
Source code in vision_agent/tools/tools.py
vit_nsfw_classification
'vit_nsfw_classification' is a tool that can classify an image as 'nsfw' or 'normal'. It returns the predicted label and their probability scores based on image content.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to classify or tag
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing the labels and scores. One dictionary contains a list of labels and other a list of scores. |
Example
>>> vit_nsfw_classification(image)
{"label": "normal", "scores": 0.68},
Source code in vision_agent/tools/tools.py
detr_segmentation
'detr_segmentation' is a tool that can segment common objects in an image without any text prompt. It returns a list of detected objects as labels, their regions as masks and their scores.
PARAMETER | DESCRIPTION |
---|---|
image |
The image used to segment things and objects
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label and mask of the detected objects. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. |
Example
>>> detr_segmentation(image)
[
{
'score': 0.45,
'label': 'window',
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
{
'score': 0.70,
'label': 'bird',
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
]
Source code in vision_agent/tools/tools.py
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 |
|
depth_anything_v2
'depth_anything_v2' is a tool that runs depth_anythingv2 model to generate a depth image from a given RGB image. The returned depth image is monochrome and represents depth values as pixel intesities with pixel values ranging from 0 to 255.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to used to generate depth image
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
np.ndarray: A grayscale depth image with pixel values ranging from 0 to 255. |
Example
>>> depth_anything_v2(image)
array([[0, 0, 0, ..., 0, 0, 0],
[0, 20, 24, ..., 0, 100, 103],
...,
[10, 11, 15, ..., 202, 202, 205],
[10, 10, 10, ..., 200, 200, 200]], dtype=uint8),
Source code in vision_agent/tools/tools.py
generate_pose_image
'generate_pose_image' is a tool that generates a open pose bone/stick image from a given RGB image. The returned bone image is RGB with the pose amd keypoints colored and background as black.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to used to generate pose image
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
np.ndarray: A bone or pose image indicating the pose and keypoints |
Example
>>> generate_pose_image(image)
array([[0, 0, 0, ..., 0, 0, 0],
[0, 20, 24, ..., 0, 100, 103],
...,
[10, 11, 15, ..., 202, 202, 205],
[10, 10, 10, ..., 200, 200, 200]], dtype=uint8),
Source code in vision_agent/tools/tools.py
template_match
'template_match' is a tool that can detect all instances of a template in a given image. It returns the locations of the detected template, a corresponding similarity score of the same
PARAMETER | DESCRIPTION |
---|---|
image |
The image used for searching the template
TYPE:
|
template_image |
The template image or crop to search in the image
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score and bounding box of the detected template with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. |
Example
>>> template_match(image, template)
[
{'score': 0.79, 'bbox': [0.1, 0.11, 0.35, 0.4]},
{'score': 0.38, 'bbox': [0.2, 0.21, 0.45, 0.5},
]
Source code in vision_agent/tools/tools.py
flux_image_inpainting
'flux_image_inpainting' performs image inpainting to fill the masked regions, given by mask, in the image, given image based on the text prompt and surrounding image context. It can be used to edit regions of an image according to the prompt given.
PARAMETER | DESCRIPTION |
---|---|
prompt |
A detailed text description guiding what should be generated in the masked area. More detailed and specific prompts typically yield better results.
TYPE:
|
image |
The source image to be inpainted. The image will serve as the base context for the inpainting process.
TYPE:
|
mask |
A binary mask image with 0's and 1's, where 1 indicates areas to be inpainted and 0 indicates areas to be preserved.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
np.ndarray: The generated image(s) as a numpy array in RGB format with values ranging from 0 to 255. |
Example: >>> # Generate inpainting >>> result = flux_image_inpainting( ... prompt="a modern black leather sofa with white pillows", ... image=image, ... mask=mask, ... ) >>> save_image(result, "inpainted_room.png")
Source code in vision_agent/tools/tools.py
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 |
|
siglip_classification
'siglip_classification' is a tool that can classify an image or a cropped detection given a list of input labels or tags. It returns the same list of the input labels along with their probability scores based on image content.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to classify or tag
TYPE:
|
labels |
The list of labels or tags that is associated with the image
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Any]
|
Dict[str, Any]: A dictionary containing the labels and scores. One dictionary contains a list of given labels and other a list of scores. |
Example
>>> siglip_classification(image, ['dog', 'cat', 'bird'])
{"labels": ["dog", "cat", "bird"], "scores": [0.68, 0.30, 0.02]},
Source code in vision_agent/tools/tools.py
agentic_object_detection
'agentic_object_detection' is a tool that can detect and count multiple objects given a text prompt such as category names or referring expressions on images. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names and associated probability scores.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image.
TYPE:
|
image |
The image to ground the prompt to.
TYPE:
|
fine_tune_id |
If you have a fine-tuned model, you can pass the fine-tuned model ID here to use it.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, and bounding box of the detected objects with normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. |
Example
>>> agentic_object_detection("car", image)
[
{'score': 0.99, 'label': 'car', 'bbox': [0.1, 0.11, 0.35, 0.4]},
{'score': 0.98, 'label': 'car', 'bbox': [0.2, 0.21, 0.45, 0.5},
]
Source code in vision_agent/tools/tools.py
agentic_sam2_instance_segmentation
'agentic_sam2_instance_segmentation' is a tool that can detect and count multiple instances of objects given a text prompt such as category names or referring expressions on images. The categories in text prompt are separated by commas. It returns a list of bounding boxes with normalized coordinates, label names, masks and associated probability scores.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The object that needs to be counted.
TYPE:
|
image |
The image that contains multiple instances of the object.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries containing the score, label, bounding box, and mask of the detected objects with normalized coordinates (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. |
Example
>>> agentic_sam2_instance_segmentation("flower", image)
[
{
'score': 0.49,
'label': 'flower',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
]
Source code in vision_agent/tools/tools.py
agentic_sam2_video_tracking
'agentic_sam2_video_tracking' is a tool that can track and segment multiple objects in a video given a text prompt such as category names or referring expressions. The categories in the text prompt are separated by commas. It returns a list of bounding boxes, label names, masks and associated probability scores and is useful for tracking and counting without duplicating counts.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt to ground to the image.
TYPE:
|
frames |
The list of frames to ground the prompt to.
TYPE:
|
chunk_length |
The number of frames to re-run agentic object detection to to find new objects.
TYPE:
|
fine_tune_id |
If you have a fine-tuned model, you can pass the fine-tuned model ID here to use it.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[List[Dict[str, Any]]]
|
List[List[Dict[str, Any]]]: A list of list of dictionaries containing the label, segmentation mask and bounding boxes. The outer list represents each frame and the inner list is the entities per frame. The detected objects have normalized coordinates between 0 and 1 (xmin, ymin, xmax, ymax). xmin and ymin are the coordinates of the top-left and xmax and ymax are the coordinates of the bottom-right of the bounding box. The mask is binary 2D numpy array where 1 indicates the object and 0 indicates the background. The label names are prefixed with their ID represent the total count. |
Example
>>> agentic_sam2_video_tracking("dinosaur", frames)
[
[
{
'label': '0: dinosaur',
'bbox': [0.1, 0.11, 0.35, 0.4],
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
},
],
...
]
Source code in vision_agent/tools/tools.py
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 |
|
minimum_distance
'minimum_distance' calculates the minimum distance between two detections which can include bounding boxes and or masks. This will return the closest distance between the objects, not the distance between the centers of the objects.
PARAMETER | DESCRIPTION |
---|---|
det1 |
The first detection of boxes or masks.
TYPE:
|
det2 |
The second detection of boxes or masks.
TYPE:
|
image_size |
The size of the image given as (height, width).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
The closest distance between the two detections.
TYPE:
|
Example
>>> closest_distance(det1, det2, image_size)
141.42
Source code in vision_agent/tools/tools.py
closest_mask_distance
'closest_mask_distance' calculates the closest distance between two masks.
PARAMETER | DESCRIPTION |
---|---|
mask1 |
The first mask.
TYPE:
|
mask2 |
The second mask.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
The closest distance between the two masks.
TYPE:
|
Example
>>> closest_mask_distance(mask1, mask2)
0.5
Source code in vision_agent/tools/tools.py
closest_box_distance
'closest_box_distance' calculates the closest distance between two bounding boxes.
PARAMETER | DESCRIPTION |
---|---|
box1 |
The first bounding box.
TYPE:
|
box2 |
The second bounding box.
TYPE:
|
image_size |
The size of the image given as (height, width).
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float
|
The closest distance between the two bounding boxes.
TYPE:
|
Example
>>> closest_box_distance([100, 100, 200, 200], [300, 300, 400, 400])
141.42
Source code in vision_agent/tools/tools.py
extract_frames_and_timestamps
'extract_frames_and_timestamps' extracts frames and timestamps from a video which can be a file path, url or youtube link, returns a list of dictionaries with keys "frame" and "timestamp" where "frame" is a numpy array and "timestamp" is the relative time in seconds where the frame was captured. The frame is a numpy array.
PARAMETER | DESCRIPTION |
---|---|
video_uri |
The path to the video file, url or youtube link
TYPE:
|
fps |
The frame rate per second to extract the frames. Defaults to 5.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Dict[str, Union[ndarray, float]]]
|
List[Dict[str, Union[np.ndarray, float]]]: A list of dictionaries containing the extracted frame as a numpy array and the timestamp in seconds. |
Example
>>> extract_frames("path/to/video.mp4")
[{"frame": np.ndarray, "timestamp": 0.0}, ...]
Source code in vision_agent/tools/tools.py
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 |
|
save_json
'save_json' is a utility function that saves data as a JSON file. It is helpful for saving data that contains NumPy arrays which are not JSON serializable.
PARAMETER | DESCRIPTION |
---|---|
data |
The data to save.
TYPE:
|
file_path |
The path to save the JSON file.
TYPE:
|
Example
>>> save_json(data, "path/to/file.json")
Source code in vision_agent/tools/tools.py
load_image
'load_image' is a utility function that loads an image from the given file path string or an URL.
PARAMETER | DESCRIPTION |
---|---|
image_path |
The path or URL to the image.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
np.ndarray: The image as a NumPy array. |
Example
>>> load_image("path/to/image.jpg")
Source code in vision_agent/tools/tools.py
save_image
'save_image' is a utility function that saves an image to a file path.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to save.
TYPE:
|
file_path |
The path to save the image file.
TYPE:
|
Example
>>> save_image(image)
Source code in vision_agent/tools/tools.py
save_video
'save_video' is a utility function that saves a list of frames as a mp4 video file on disk.
PARAMETER | DESCRIPTION |
---|---|
frames |
A list of frames to save.
TYPE:
|
output_video_path |
The path to save the video file. If not provided, a temporary file will be created.
TYPE:
|
fps |
The number of frames composes a second in the video.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
The path to the saved video file.
TYPE:
|
Example
>>> save_video(frames)
"/tmp/tmpvideo123.mp4"
Source code in vision_agent/tools/tools.py
overlay_bounding_boxes
'overlay_bounding_boxes' is a utility function that displays bounding boxes on an image. It will draw a box around the detected object with the label and score.
PARAMETER | DESCRIPTION |
---|---|
medias |
The image or frames to display the bounding boxes on.
TYPE:
|
bboxes |
A list of dictionaries or a list of list of dictionaries containing the bounding boxes.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[ndarray, List[ndarray]]
|
np.ndarray: The image with the bounding boxes, labels and scores displayed. |
Example
>>> image_with_bboxes = overlay_bounding_boxes(
image, [{'score': 0.99, 'label': 'dinosaur', 'bbox': [0.1, 0.11, 0.35, 0.4]}],
)
Source code in vision_agent/tools/tools.py
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 |
|
overlay_segmentation_masks
'overlay_segmentation_masks' is a utility function that displays segmentation masks. It will overlay a colored mask on the detected object with the label.
PARAMETER | DESCRIPTION |
---|---|
medias |
The image or frames to display the masks on.
TYPE:
|
masks |
A list of dictionaries or a list of list of dictionaries containing the masks, labels and scores.
TYPE:
|
draw_label |
If True, the labels will be displayed on the image.
TYPE:
|
secondary_label_key |
The key to use for the secondary tracking label which is needed in videos to display tracking information.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Union[ndarray, List[ndarray]]
|
np.ndarray: The image with the masks displayed. |
Example
>>> image_with_masks = overlay_segmentation_masks(
image,
[{
'score': 0.99,
'label': 'dinosaur',
'mask': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
}],
)
Source code in vision_agent/tools/tools.py
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 |
|
overlay_heat_map
'overlay_heat_map' is a utility function that displays a heat map on an image.
PARAMETER | DESCRIPTION |
---|---|
image |
The image to display the heat map on.
TYPE:
|
heat_map |
A dictionary containing the heat map under the key 'heat_map'.
TYPE:
|
alpha |
The transparency of the overlay. Defaults to 0.8.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ndarray
|
np.ndarray: The image with the heat map displayed. |
Example
>>> image_with_heat_map = overlay_heat_map(
image,
{
'heat_map': array([[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 125, 125, 125]], dtype=uint8),
},
)
Source code in vision_agent/tools/tools.py
vision_agent.tools.tool_utils
ToolCallTrace
should_report_tool_traces
send_inference_request
send_inference_request(
payload,
endpoint_name,
files=None,
v2=False,
metadata_payload=None,
is_form=False,
)