Skip to content

landingai.common

APIKey

Bases: BaseSettings

The API key of a user in a particular organization in LandingLens. It's also known as the "API Key v2" in LandingLens. The difference between this v2 key and the legacy API key is that the v2 key is a single string, and the string always starts with "land_sk_" prefix. The legacy API key also required an API Secret. Note: Using the v2 key is the recommended way to authenticate with the LandingLens API.

It supports loading from environment variables or .env files.

The supported name of the environment variables are (case-insensitive): - LANDINGAI_API_KEY

Environment variables will always take priority over values loaded from a dotenv file.

Source code in landingai/common.py
class APIKey(BaseSettings):
    """The API key of a user in a particular organization in LandingLens.
    It's also known as the "API Key v2" in LandingLens.
    The difference between this v2 key and the legacy API key is that the v2 key is a single string, and the string always starts with "land_sk_" prefix. The legacy API key also required an API Secret.
    Note: Using the v2 key is the recommended way to authenticate with the LandingLens API.

    It supports loading from environment variables or .env files.

    The supported name of the environment variables are (case-insensitive):
    - LANDINGAI_API_KEY

    Environment variables will always take priority over values loaded from a dotenv file.
    """

    api_key: str

    @field_validator("api_key")
    def is_api_key_valid(cls, key: str) -> str:
        """Check if the API key is a v2 key."""
        if not key.startswith("land_sk_"):
            raise InvalidApiKeyError(
                f"API key (v2) must start with 'land_sk_' prefix, but it's {key}. See https://support.landing.ai/docs/api-key for more information."
            )
        return key

    model_config = SettingsConfigDict(
        env_file=".env",
        env_prefix="landingai_",
        case_sensitive=False,
        extra="ignore",
    )

is_api_key_valid(key)

Check if the API key is a v2 key.

Source code in landingai/common.py
@field_validator("api_key")
def is_api_key_valid(cls, key: str) -> str:
    """Check if the API key is a v2 key."""
    if not key.startswith("land_sk_"):
        raise InvalidApiKeyError(
            f"API key (v2) must start with 'land_sk_' prefix, but it's {key}. See https://support.landing.ai/docs/api-key for more information."
        )
    return key

ClassificationPrediction

Bases: Prediction

A single classification prediction for an image.

Source code in landingai/common.py
class ClassificationPrediction(Prediction):
    """A single classification prediction for an image."""

    label_name: str
    """The predicted label name."""

    label_index: int
    """The predicted label index.
    A label index is an unique integer that identifies a label in your label book.
    For more information, see https://support.landing.ai/docs/manage-label-book.
    """

label_index: int instance-attribute

The predicted label index. A label index is an unique integer that identifies a label in your label book. For more information, see https://support.landing.ai/docs/manage-label-book.

label_name: str instance-attribute

The predicted label name.

InferenceMetadata

Bases: BaseModel

LandingLens inference metadata associated with each inference. You can view the inference metadata (on each image) in the LandingLens web app, or use it to filter the historical inference results. Currently, only below four metadata fields are supported. They are all optional fields, and you can choose to provide them or not.

Example:

metadata = InferenceMetadata(
    image_id="28587.jpg",
    inspection_station_id="camera#1",
    location_id="factory_floor#1",
    capture_timestamp="2021-10-11T12:00:00.00000",
)

Source code in landingai/common.py
class InferenceMetadata(BaseModel):
    """LandingLens inference metadata associated with each inference.
    You can view the inference metadata (on each image) in the LandingLens web app, or use it to filter the historical inference results.
    Currently, only below four metadata fields are supported.
    They are all optional fields, and you can choose to provide them or not.

    Example:
    ```
    metadata = InferenceMetadata(
        image_id="28587.jpg",
        inspection_station_id="camera#1",
        location_id="factory_floor#1",
        capture_timestamp="2021-10-11T12:00:00.00000",
    )
    ```
    """

    image_id: str = Field(alias="imageId", description="Image ID", default="")
    inspection_station_id: str = Field(
        alias="inspectionStationId", description="Inspection station ID.", default=""
    )
    location_id: str = Field(alias="locationId", description="Location ID.", default="")
    capture_timestamp: str = Field(
        alias="captureTimestamp",
        description="Inference occurred timestamp. If not provided, the inference server will use the current timestamp when request is received.",
        default="",
    )

ObjectDetectionPrediction

Bases: ClassificationPrediction

A single bounding box prediction for an image. It includes a predicted bounding box (xmin, ymin, xmax, ymax), confidence score, and the predicted label.

Source code in landingai/common.py
class ObjectDetectionPrediction(ClassificationPrediction):
    """A single bounding box prediction for an image.
    It includes a predicted bounding box (xmin, ymin, xmax, ymax), confidence score, and the predicted label.
    """

    id: str
    """A unique string identifier (UUID) for the prediction."""

    # TODO: Deprecate this attribute, and use bounding_box (singular) instead.
    bboxes: BoundingBox
    """A tuple of (xmin, ymin, xmax, ymax) of the predicted bounding box."""

    @cached_property
    def num_predicted_pixels(self) -> int:
        """The number of pixels within the predicted bounding box."""
        return (self.bboxes[2] - self.bboxes[0]) * (self.bboxes[3] - self.bboxes[1])

    model_config = ConfigDict(
        ignored_types=(cached_property,),
    )

bboxes: BoundingBox instance-attribute

A tuple of (xmin, ymin, xmax, ymax) of the predicted bounding box.

id: str instance-attribute

A unique string identifier (UUID) for the prediction.

num_predicted_pixels: int cached property

The number of pixels within the predicted bounding box.

OcrPrediction

Bases: Prediction

A single OCR prediction for an image.

Source code in landingai/common.py
class OcrPrediction(Prediction):
    """A single OCR prediction for an image."""

    text: str
    """The predicted text."""

    location: List[Tuple[int, int]]
    """A quadrilateral polygon that represents the location of the text. It is a list of four (x, y) coordinates."""

location: List[Tuple[int, int]] instance-attribute

A quadrilateral polygon that represents the location of the text. It is a list of four (x, y) coordinates.

text: str instance-attribute

The predicted text.

Prediction

Bases: BaseModel

The base/parent prediction class that stores the common shared properties of a prediction.

Source code in landingai/common.py
class Prediction(BaseModel):
    """The base/parent prediction class that stores the common shared properties of a prediction."""

    score: float
    """The confidence score of this prediction."""

    @property
    def num_predicted_pixels(self) -> int:
        """Return the number of pixels within the prediction"""
        raise NotImplementedError()

num_predicted_pixels: int property

Return the number of pixels within the prediction

score: float instance-attribute

The confidence score of this prediction.

SegmentationPrediction

Bases: ClassificationPrediction

A single segmentation mask prediction for an image. It includes a predicted segmentation mask, confidence score, and the predicted label.

Source code in landingai/common.py
class SegmentationPrediction(ClassificationPrediction):
    """A single segmentation mask prediction for an image.
    It includes a predicted segmentation mask, confidence score, and the predicted label.
    """

    id: str
    """A unique string identifier (UUID) for this prediction."""

    encoded_mask: str
    """A run-length encoded bitmap string."""

    encoding_map: Dict[str, int]
    """A map that is used to generate the encoded_mask. For example: {'Z':0, 'N':1}.
    The key is the character in the encoded_mask, the value is the bit value.
    """

    mask_shape: Tuple[int, int]
    """The shape of the decoded two-dimensional segmentation mask. For example: (1024, 1024)."""

    @cached_property
    def decoded_boolean_mask(self) -> np.ndarray:
        """Decoded boolean segmentation mask.
        It is a two-dimensional NumPy array with 0s and 1s.
        1 means the pixel is the predicted class, 0 means the pixel is not.
        """
        flattened_bitmap = decode_bitmap_rle(self.encoded_mask, self.encoding_map)
        return np.array(flattened_bitmap, dtype=np.uint8).reshape(self.mask_shape)

    @cached_property
    def decoded_index_mask(self) -> np.ndarray:
        """Decoded index segmentation mask.
        It is a two-dimensional numpy array with 0s and the number of the predicted class index.
        This is useful if you want to overlay multiple segmentation masks into one.
        """
        return self.decoded_boolean_mask * self.label_index

    @cached_property
    def decoded_colored_mask(self) -> np.ndarray:
        """Decoded colored segmentation mask.
        It is a three-dimensional numpy array (HWC) where the predicted pixels are colored.
        The color is randomly assigned for each mask.
        """
        mask_3d = np.expand_dims(self.decoded_boolean_mask, -1)
        mask_3d = cv2.cvtColor(mask_3d, cv2.COLOR_GRAY2RGB)
        random_color = np.random.randint(0, 255, size=3, dtype=np.uint8)  # type: ignore
        return mask_3d * random_color  # type: ignore

    @cached_property
    def num_predicted_pixels(self) -> int:
        """The number of pixels that are predicted as the class."""
        return np.count_nonzero(self.decoded_boolean_mask)

    @cached_property
    def percentage_predicted_pixels(self) -> float:
        """The percentage of pixels that are predicted as the class."""
        return np.count_nonzero(self.decoded_boolean_mask) / math.prod(self.mask_shape)

    model_config = ConfigDict(
        ignored_types=(cached_property,),
    )

decoded_boolean_mask: np.ndarray cached property

Decoded boolean segmentation mask. It is a two-dimensional NumPy array with 0s and 1s. 1 means the pixel is the predicted class, 0 means the pixel is not.

decoded_colored_mask: np.ndarray cached property

Decoded colored segmentation mask. It is a three-dimensional numpy array (HWC) where the predicted pixels are colored. The color is randomly assigned for each mask.

decoded_index_mask: np.ndarray cached property

Decoded index segmentation mask. It is a two-dimensional numpy array with 0s and the number of the predicted class index. This is useful if you want to overlay multiple segmentation masks into one.

encoded_mask: str instance-attribute

A run-length encoded bitmap string.

encoding_map: Dict[str, int] instance-attribute

A map that is used to generate the encoded_mask. For example: {'Z':0, 'N':1}. The key is the character in the encoded_mask, the value is the bit value.

id: str instance-attribute

A unique string identifier (UUID) for this prediction.

mask_shape: Tuple[int, int] instance-attribute

The shape of the decoded two-dimensional segmentation mask. For example: (1024, 1024).

num_predicted_pixels: int cached property

The number of pixels that are predicted as the class.

percentage_predicted_pixels: float cached property

The percentage of pixels that are predicted as the class.

decode_bitmap_rle(bitmap, encoding_map=None)

Decode bitmap string to NumPy array.

Parameters

bitmap: Single run-length encoded bitmap string. For example: "5Z3N2Z". encoding_map: Dictionary with the enconding used to generate the bitmap. If none, {'Z':0, 'N':1} will be used.

Return

A flattened segmentation mask (with 0s and 1s) for a single class.

Source code in landingai/common.py
def decode_bitmap_rle(
    bitmap: str, encoding_map: Optional[Dict[str, int]] = None
) -> List[int]:
    """
    Decode bitmap string to NumPy array.

    Parameters
    ----------
    bitmap:
        Single run-length encoded bitmap string. For example: "5Z3N2Z".
    encoding_map:
        Dictionary with the enconding used to generate the bitmap.
        If none, {'Z':0, 'N':1} will be used.

    Return
    -----
    A flattened segmentation mask (with 0s and 1s) for a single class.
    """
    if not encoding_map:
        encoding_map = {"Z": 0, "N": 1}
    flat_mask = []
    bitmap_list = re.split("(Z|N)", bitmap)
    for num, map_letter in zip(*[iter(bitmap_list)] * 2):
        map_number = encoding_map[map_letter]
        flat_mask.extend([int(map_number)] * int(num))
    return flat_mask

get_prediction_bounding_box(prediction)

Returns the prediction bounding box coordinates for compatible Predictions. If prediction is not compatible with BoundingBox extraction, returns None.

Note that some prediction types might have precision loss when converting to BoundingBox. OCR predictions, for example, are not guaranteed to be rectangular, alghough BoundingBoxes are.

Source code in landingai/common.py
def get_prediction_bounding_box(prediction: Prediction) -> Optional[BoundingBox]:
    """
    Returns the prediction bounding box coordinates for compatible Predictions.
    If prediction is not compatible with BoundingBox extraction, returns None.

    Note that some prediction types might have precision loss when converting to BoundingBox.
    OCR predictions, for example, are not guaranteed to be rectangular, alghough BoundingBoxes are.
    """
    if isinstance(prediction, ObjectDetectionPrediction):
        return prediction.bboxes
    elif isinstance(prediction, OcrPrediction):
        x_list = [x for x, _ in prediction.location]
        y_list = [y for _, y in prediction.location]
        return (
            min(x_list),
            min(y_list),
            max(x_list),
            max(y_list),
        )
    else:
        return None